Tracking transcription–translation coupling in real time – Nature

Miller, O. L., Hamkalo, B. A. & Thomas, C. A. Visualization of bacterial genes in action. Science 169, 392–395 (1970).
Google Scholar
Blaha, G. M. & Wade, J. T. Transcription–translation coupling in bacteria. Annu. Rev. Genet. 56, 187–205 (2022).
Google Scholar
McGary, K. & Nudler, E. RNA polymerase and the ribosome: the close relationship. Curr. Opin. Microbiol. 16, 112–117 (2013).
Google Scholar
Irastortza-Olaziregi, M. & Amster-Choder, O. Coupled transcription–translation in prokaryotes: an old couple with new surprises. Front. Microbiol. 11, 624830 (2020).
Google Scholar
Burmann, B. M. et al. A NusE:NusG complex links transcription and translation. Science 328, 501–504 (2010).
Google Scholar
Webster, M. W. et al. Structural basis of transcription-translation coupling and collision in bacteria. Science 369, 1355–1359 (2020).
Google Scholar
Wang, C. et al. Structural basis of transcription-translation coupling. Science 369, 1359–1365 (2020).
Google Scholar
O’Reilly, F. J. et al. In-cell architecture of an actively transcribing–translating expressome. Science 369, 554–557 (2020).
Google Scholar
Kohler, R., Mooney, R. A., Mills, D. J., Landick, R. & Cramer, P. Architecture of a transcribing–translating expressome. Science 356, 194–197 (2017).
Google Scholar
Wee, L. M. et al. A trailing ribosome speeds up RNA polymerase at the expense of transcript fidelity via force and allostery. Cell 186, 1244–1262.e1234 (2023).
Google Scholar
Stevenson-Jones, F., Woodgate, J., Castro-Roa, D. & Zenkin, N. Ribosome reactivates transcription by physically pushing RNA polymerase out of transcription arrest. Proc. Natl Acad. Sci. USA 117, 8462–8467 (2020).
Google Scholar
Proshkin, S., Rahmouni, A. R., Mironov, A. & Nudler, E. Cooperation between translating ribosomes and RNA polymerase in transcription elongation. Science 328, 504–508 (2010).
Google Scholar
Zhu, M., Mori, M., Hwa, T. & Dai, X. Disruption of transcription–translation coordination in Escherichia coli leads to premature transcriptional termination. Nat. Microbiol. 4, 2347–2356 (2019).
Google Scholar
Woodgate, J., Mosaei, H., Brazda, P., Stevenson-Jones, F. & Zenkin, N. Translation selectively destroys non-functional transcription complexes. Nature 626, 891–896 (2024).
Google Scholar
Duss, O. et al. Real-time assembly of ribonucleoprotein complexes on nascent RNA transcripts. Nat. Commun. 9, 5087 (2018).
Google Scholar
Dorywalska, M. et al. Site-specific labeling of the ribosome for single-molecule spectroscopy. Nucleic Acids Res. 33, 182–189 (2005).
Google Scholar
Marshall, R. A., Dorywalska, M. & Puglisi, J. D. Irreversible chemical steps control intersubunit dynamics during translation. Proc. Natl Acad. Sci. USA 105, 15364–15369 (2008).
Google Scholar
Chen, J., Tsai, A., O’Leary, S. E., Petrov, A. & Puglisi, J. D. Unraveling the dynamics of ribosome translocation. Curr. Opin. Struct. Biol. 22, 804–814 (2012).
Google Scholar
Chen, J., Petrov, A., Tsai, A., O’Leary, S. E. & Puglisi, J. D. Coordinated conformational and compositional dynamics drive ribosome translocation. Nat. Struct. Mol. Biol. 20, 718–727 (2013).
Google Scholar
Tsai, A. et al. Heterogeneous pathways and timing of factor departure during translation initiation. Nature 487, 390–393 (2012).
Google Scholar
Prabhakar, A., Puglisi, E. V. & Puglisi, J. D. Single-molecule fluorescence applied to translation. Cold Spring Harb. Perspect. Biol. 11, a032714 (2019).
Google Scholar
Das, A., Bao, C. & Ermolenko, D. N. Comparing FRET pairs that report on intersubunit rotation in bacterial ribosomes. J. Mol. Biol. 435, 168185 (2023).
Google Scholar
Farewell, A. & Neidhardt, F. C. Effect of temperature on in vivo protein synthetic capacity in Escherichia coli. J. Bacteriol. 180, 4704–4710 (1998).
Google Scholar
Zhu, M., Dai, X. & Wang, Y. P. Real time determination of bacterial in vivo ribosome translation elongation speed based on LacZα complementation system. Nucleic Acids Res. 44, e155 (2016).
Google Scholar
Capece, M. C., Kornberg, G. L., Petrov, A. & Puglisi, J. D. A simple real-time assay for in vitro translation. RNA 21, 296–305 (2015).
Google Scholar
Dangkulwanich, M., Ishibashi, T., Bintu, L. & Bustamante, C. Molecular mechanisms of transcription through single-molecule experiments. Chem. Rev. 114, 3203–3223 (2014).
Google Scholar
Ryals, J., Little, R. & Bremer, H. Temperature dependence of RNA synthesis parameters in Escherichia coli. J. Bacteriol. 151, 879–887 (1982).
Google Scholar
Aitken, C. E. & Puglisi, J. D. Following the intersubunit conformation of the ribosome during translation in real time. Nat. Struct. Mol. Biol. 17, 793–800 (2010).
Google Scholar
Chen, J. et al. Coupling of mRNA structure rearrangement to ribosome movement during bypassing of non-coding regions. Cell 163, 1267–1280 (2015).
Google Scholar
Wang, J. et al. Rapid 40S scanning and its regulation by mRNA structure during eukaryotic translation initiation. Cell 185, 1–14 (2022).
Google Scholar
Yin, J. et al. Genetically encoded short peptide tag for versatile protein labeling by Sfp phosphopantetheinyl transferase. Proc. Natl Acad. Sci. USA 102, 15815–15820 (2005).
Google Scholar
Kapanidis, A. N. et al. Alternating-laser excitation of single molecules. Acc. Chem. Res. 38, 523–533 (2005).
Google Scholar
Wang, C., Molodtsov, V., Kaelber, J. T., Blaha, G. & Ebright, R. H. Structural basis of long-range transcription–translation coupling. Preprint at bioRxiv https://doi.org/10.1101/2024.07.20.604413 (2024).
Bailey, E. J., Gottesman, M. E. & Gonzalez, R. L. Jr NusG-mediated coupling of transcription and translation enhances gene expression by suppressing RNA polymerase backtracking. J. Mol. Biol. 434, 167330 (2022).
Google Scholar
Kang, J. Y. et al. Structural basis for transcript elongation control by NusG family universal regulators. Cell 173, 1650–1662.e1614 (2018).
Google Scholar
Washburn, R. S. et al. Escherichia coli NusG links the lead ribosome with the transcription elongation complex. iScience 23, 101352 (2020).
Google Scholar
Webster, M. W. & Weixlbaumer, A. Macromolecular assemblies supporting transcription-translation coupling. Transcription 12, 103–125 (2021).
Google Scholar
Burmann, B. M., Scheckenhofer, U., Schweimer, K. & Rosch, P. Domain interactions of the transcription–translation coupling factor Escherichia coli NusG are intermolecular and transient. Biochem. J 435, 783–789 (2011).
Google Scholar
Weixlbaumer, A., Grunberger, F., Werner, F. & Grohmann, D. Coupling of transcription and translation in archaea: cues from the bacterial world. Front. Microbiol. 12, 661827 (2021).
Google Scholar
Zhu, C. et al. Transcription factors modulate RNA polymerase conformational equilibrium. Nat. Commun. 13, 1546 (2022).
Google Scholar
Ha, K. S., Toulokhonov, I., Vassylyev, D. G. & Landick, R. The NusA N-terminal domain is necessary and sufficient for enhancement of transcriptional pausing via interaction with the RNA exit channel of RNA polymerase. J. Mol. Biol. 401, 708–725 (2010).
Google Scholar
Mooney, R. A., Schweimer, K., Rösch, P., Gottesman, M. & Landick, R. Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators. J. Mol. Biol. 391, 341–358 (2009).
Google Scholar
Landick, R. Transcriptional pausing as a mediator of bacterial gene regulation. Annu. Rev. Microbiol. 75, 291–314 (2021).
Google Scholar
Guo, X. et al. Structural basis for NusA stabilized transcriptional pausing. Mol. Cell 69, 816–827.e814 (2018).
Google Scholar
Fan, H. et al. Transcription–translation coupling: direct interactions of RNA polymerase with ribosomes and ribosomal subunits. Nucleic Acids Res. 45, 11043–11055 (2017).
Google Scholar
Chen, M. & Fredrick, K. Measures of single- versus multiple-round translation argue against a mechanism to ensure coupling of transcription and translation. Proc. Natl Acad. Sci. USA 115, 10774–10779 (2018).
Google Scholar
Chen, M. & Fredrick, K. RNA polymerase’s relationship with the ribosome: not so physical, most of the time. J. Mol. Biol. 432, 3981–3986 (2020).
Google Scholar
Johnson, G. E., Lalanne, J. B., Peters, M. L. & Li, G. W. Functionally uncoupled transcription-translation in Bacillus subtilis. Nature 585, 124–128 (2020).
Google Scholar
Ochman, H. & Jones, I. B. Evolutionary dynamics of full genome content in Escherichia coli. EMBO J. 19, 6637–6643 (2000).
Google Scholar
Molodtsov, V., Wang, C., Firlar, E., Kaelber, J. T. & Ebright, R. H. Structural basis of Rho-dependent transcription termination. Nature 614, 367–374 (2023).
Google Scholar
Said, N. et al. Steps toward translocation-independent RNA polymerase inactivation by terminator ATPase ρ. Science 371, eabd1673 (2021).
Google Scholar
Koslover, D. J., Fazal, F. M., Mooney, R. A., Landick, R. & Block, S. M. Binding and translocation of termination factor rho studied at the single-molecule level. J. Mol. Biol. 423, 664–676 (2012).
Google Scholar
Qureshi, N. S. & Duss, O. Co-transcriptional assembly mechanisms of protein-RNA complexes. FEBS Lett. 597, 2599–2600 (2023).
Google Scholar
Huang, Y. H. et al. Structure-based mechanisms of a molecular RNA polymerase/chaperone machine required for ribosome biosynthesis. Mol. Cell 79, 1024–1036.e1025 (2020).
Google Scholar
Zhang, S. et al. Structure of a transcribing RNA polymerase II–U1 snRNP complex. Science 371, 305–309 (2021).
Google Scholar
Meinnel, T. & Blanquet, S. Maturation of pre-tRNAfMet by Escherichia coli RNase P is specified by a guanosine of the 5′-flanking sequence. J. Biol. Chem. 270, 15908–15914 (1995).
Google Scholar
Svetlov, V. & Artsimovitch, I. Purification of bacterial RNA polymerase: tools and protocols. Methods Mol. Biol. 1276, 13–29 (2015).
Google Scholar
Yin, J., Lin, A. J., Golan, D. E. & Walsh, C. T. Site-specific protein labeling by Sfp phosphopantetheinyl transferase. Nat. Protoc. 1, 280–285 (2006).
Google Scholar
Zhou, Z. et al. Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases. ACS Chem. Biol. 2, 337–346 (2007).
Google Scholar
Mellot, P., Mechulam, Y., Le Corre, D., Blanquet, S. & Fayat, G. Identification of an amino acid region supporting specific methionyl-tRNA synthetase: tRNA recognition. J. Mol. Biol. 208, 429–443 (1989).
Google Scholar
Kitagawa, M. et al. Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res. 12, 291–299 (2005).
Google Scholar
Mechulam, Y., Guillon, L., Yatime, L., Blanquet, S. & Schmitt, E. Protection-based assays to measure aminoacyl-tRNA binding to translation initiation factors. Methods Enzymol. 430, 265–281 (2007).
Google Scholar
Schmitt, E., Blanquet, S. & Mechulam, Y. Crystallization and preliminary X-ray analysis of Escherichia coli methionyl-tRNAMetf formyltransferase complexed with formyl-methionyl-tRNAMetf. Acta Crystallogr. D 55, 332–334 (1999).
Google Scholar
Walker, S. E. & Fredrick, K. Preparation and evaluation of acylated tRNAs. Methods 44, 81–86 (2008).
Google Scholar
Fritz, B. R. & Jewett, M. C. The impact of transcriptional tuning on in vitro integrated rRNA transcription and ribosome construction. Nucleic Acids Res. 42, 6774–6785 (2014).
Google Scholar
Wang, J. et al. eIF5B gates the transition from translation initiation to elongation. Nature 573, 605–608 (2019).
Google Scholar
Duss, O., Stepanyuk, G. A., Puglisi, J. D. & Williamson, J. R. Transient protein–RNA interactions guide nascent ribosomal RNA folding. Cell 179, 1357–1369 (2019).
Google Scholar
Landick, R., Wang, D. & Chan, C. L. Quantitative analysis of transcriptional pausing by Escherichia coli RNA polymerase: his leader pause site as paradigm. Methods Enzymol. 274, 334–353 (1996).
Google Scholar
Chandradoss, S. D. et al. Surface passivation for single-molecule protein studies. J. Vis. Exp. https://doi.org/10.3791/50549 (2014).
Google Scholar
Blanchard, S. C., Kim, H. D., Gonzalez, R. L. Jr, Puglisi, J. D. & Chu, S. tRNA dynamics on the ribosome during translation. Proc. Natl Acad. Sci. USA 101, 12893–12898 (2004). a.
Google Scholar
Blanchard, S. C., Gonzalez, R. L., Kim, H. D., Chu, S. & Puglisi, J. D. tRNA selection and kinetic proofreading in translation. Nat. Struct. Mol. Biol. 11, 1008–1014 (2004). b.
Google Scholar
Juette, M. F. et al. Single-molecule imaging of non-equilibrium molecular ensembles on the millisecond timescale. Nat. Methods 13, 341–344 (2016).
Google Scholar
Verma, A. R., Ray, K. K., Bodick, M., Kinz-Thompson, C. D. & Gonzalez, R. L. Jr Increasing the accuracy of single-molecule data analysis using tMAVEN. Biophys. J. 123, 2765–2780 (2024).
Google Scholar
Lapointe, C. P. et al. eIF5B and eIF1A reorient initiator tRNA to allow ribosomal subunit joining. Nature 607, 185–190 (2022).
Google Scholar
Duss, O., & Qureshi, N. Tracking transcription–translation coupling in real-time. Zenodo https://doi.org/10.5281/zenodo.13271669 (2024).
Demo, G. et al. Structure of RNA polymerase bound to ribosomal 30S subunit. eLife 6, e28560 (2017).
Google Scholar