Two waves of massive stars running away from the young cluster R136 – Nature
de Wit, W. J., Testi, L., Palla, F. & Zinnecker, H. The origin of massive O-type field stars. II. Field O stars as runaways. Astron. Astrophys. 437, 247–255 (2005).
Google Scholar
Fujii, M. S. & Portegies Zwart, S. The origin of OB runaway stars. Science 334, 1380–1383 (2011).
Google Scholar
Gaia Collaboration. The Gaia mission. Astron. Astrophys. 595, A1 (2016).
Google Scholar
Gaia Collaboration. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 649, A1 (2021).
Google Scholar
Gaia Collaboration et al. Gaia Data Release 3. Summary of the content and survey properties. Astron. Astrophys. 674, A1 (2023).
Banerjee, S., Kroupa, P. & Oh, S. Runaway massive stars from R136: VFTS 682 is very likely a ‘slow runaway’. Astrophys. J. 746, 15 (2012).
Google Scholar
Oh, S., Kroupa, P. & Pflamm-Altenburg, J. Dependency of dynamical ejections of O stars on the masses of very young star clusters. Astrophys. J. 805, 92 (2015).
Google Scholar
Andersson, E. P., Agertz, O. & Renaud, F. How runaway stars boost galactic outflows. Mon. Not. R. Astron. Soc. 494, 3328–3341 (2020).
Google Scholar
Steinwandel, U. P., Bryan, G. L., Somerville, R. S., Hayward, C. C. & Burkhart, B. On the impact of runaway stars on dwarf galaxies with resolved interstellar medium. Mon. Not. R. Astron. Soc. 526, 1408–1427 (2023).
Google Scholar
Schneider, F. R. N. et al. An excess of massive stars in the local 30 Doradus starburst. Science 359, 69–71 (2018).
Google Scholar
Evans, C. J. et al. A massive runaway star from 30 Doradus. Astrophys. J. Lett. 715, 74–79 (2010).
Google Scholar
Lennon, D. J. et al. Gaia DR2 reveals a very massive runaway star ejected from R136. Astron. Astrophys. 619, A78 (2018).
Google Scholar
Sana, H. et al. The VLT-FLAMES Tarantula survey. Observational evidence for two distinct populations of massive runaway stars in 30 Doradus. Astron. Astrophys. 668, L5 (2022).
Google Scholar
Oh, S. & Kroupa, P. Dynamical ejections of massive stars from young star clusters under diverse initial conditions. Astron. Astrophys. 590, A107 (2016).
Google Scholar
Maíz Apellániz, J., Pantaleoni González, M., Barbá, R. H. & Weiler, M. Escape from the Bermuda cluster: orphanization by multiple stellar ejections. Astron. Astrophys. 657, A72 (2022).
Google Scholar
Stoop, M. et al. The early evolution of young massive clusters. II. The kinematic history of NGC 6618/M 17. Astron. Astrophys. 681, A21 (2024).
Google Scholar
Brands, S. A. et al. The R136 star cluster dissected with Hubble Space Telescope/STIS. III. The most massive stars and their clumped winds. Astron. Astrophys. 663, A36 (2022).
Google Scholar
Crowther, P. A. et al. The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 Msolar stellar mass limit. Mon. Not. R. Astron. Soc. 408, 731–751 (2010).
Google Scholar
Bestenlehner, J. M. et al. The R136 star cluster dissected with Hubble Space Telescope/STIS. II. Physical properties of the most massive stars in R136. Mon. Not. R. Astron. Soc. 499, 1918–1936 (2020).
Google Scholar
Sabbi, E. et al. A double cluster at the core of 30 Doradus. Astrophys. J. Lett. 754, L37 (2012).
Google Scholar
Bestenlehner, J. M. et al. The VLT-FLAMES Tarantula survey. XVII. Physical and wind properties of massive stars at the top of the main sequence. Astron. Astrophys. 570, A38 (2014).
Google Scholar
Crowther, P. A. et al. The R136 star cluster dissected with Hubble Space Telescope/STIS. I. Far-ultraviolet spectroscopic census and the origin of He ii λ1640 in young star clusters. Mon. Not. R. Astron. Soc. 458, 624–659 (2016).
Google Scholar
Ramírez-Tannus, M. C. et al. A relation between the radial velocity dispersion of young clusters and their age. Evidence for hardening as the formation scenario of massive close binaries. Astron. Astrophys. 645, L10 (2021).
Google Scholar
Salpeter, E. E. The luminosity function and stellar evolution. Astrophys. J. 121, 161 (1955).
Google Scholar
Doran, E. I. et al. The VLT-FLAMES Tarantula survey. XI. A census of the hot luminous stars and their feedback in 30 Doradus. Astron. Astrophys. 558, A134 (2013).
Google Scholar
Barkana, R. & Loeb, A. In the beginning: the first sources of light and the reionization of the Universe. Phys. Rep. 349, 125–238 (2001).
Google Scholar
Wise, J. H. & Cen, R. Ionizing photon escape fractions from high-redshift dwarf galaxies. Astrophys. J. 693, 984–999 (2009).
Google Scholar
Atek, H. et al. Most of the photons that reionized the Universe came from dwarf galaxies. Nature 626, 975–978 (2024).
Google Scholar
Razoumov, A. O. & Sommer-Larsen, J. Modeling Lyman continuum emission from young galaxies. Astrophys. J. 668, 674–681 (2007).
Google Scholar
Conroy, C. & Kratter, K. M. Runaway stars and the escape of ionizing radiation from high-redshift galaxies. Astrophys. J. 755, 123 (2012).
Google Scholar
Pietrzyński, G. et al. A distance to the Large Magellanic Cloud that is precise to one per cent. Nature 567, 200–203 (2019).
Google Scholar
Lindegren, L. et al. Gaia Early Data Release 3. Parallax bias versus magnitude, colour, and position. Astron. Astrophys. 649, A4 (2021).
Google Scholar
Lindegren, L. Re-normalising the astrometric chi-square in Gaia DR2. Report No. GAIA-C3-TN-LU-LL-124 (Gaia Collaboration, Semantic Scholar, 2018).
Pecaut, M. J. & Mamajek, E. E. Intrinsic colors, temperatures, and bolometric corrections of pre-main-sequence stars. Astrophys. J. Suppl. Ser. 208, 9 (2013).
Google Scholar
Hénault-Brunet, V. et al. The VLT-FLAMES Tarantula survey. VII. A low velocity dispersion for the young massive cluster R136. Astron. Astrophys. 546, A73 (2012).
Google Scholar
Portegies Zwart, S. F., McMillan, S. L. W. & Gieles, M. Young massive star clusters. Annu. Rev. Astron. Astrophys. 48, 431–493 (2010).
Google Scholar
Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163–1183 (2006).
Google Scholar
Bestenlehner, J. M. et al. The VLT-FLAMES Tarantula Survey. III. A very massive star in apparent isolation from the massive cluster R136. Astron. Astrophys. 530, L14 (2011).
Google Scholar
Renzo, M. et al. Space astrometry of the very massive ~150 M⊙ candidate runaway star VFTS682. Mon. Not. R. Astron. Soc. 482, 102–106 (2019).
Google Scholar
Brands, S. A. et al. Extinction towards the cluster R136 in the Large Magellanic Cloud. An extinction law from the near-infrared to the ultraviolet. Astron. Astrophys. 673, A132 (2023).
Google Scholar
Tehrani, K. A. et al. Weighing Melnick 34: the most massive binary system known. Mon. Not. R. Astron. Soc. 484, 2692–2710 (2019).
Google Scholar
Schnurr, O., Moffat, A. F. J., St-Louis, N., Morrell, N. I. & Guerrero, M. A. A spectroscopic survey of WNL stars in the Large Magellanic Cloud: general properties and binary status. Mon. Not. R. Astron. Soc. 389, 806–828 (2008).
Google Scholar
Shenar, T. et al. The Wolf–Rayet binaries of the nitrogen sequence in the Large Magellanic Cloud. Spectroscopy, orbital analysis, formation, and evolution. Astron. Astrophys. 627, A151 (2019).
Google Scholar
Castro, N. et al. Mapping the core of the Tarantula nebula with VLT-MUSE. I. Spectral and nebular content around R136. Astron. Astrophys. 614, A147 (2018).
Google Scholar
Sana, H. et al. The VLT-FLAMES Tarantula survey. VIII. Multiplicity properties of the O-type star population. Astron. Astrophys. 550, A107 (2013).
Google Scholar
Mahy, L. et al. The Tarantula massive binary monitoring. III. Atmosphere analysis of double-lined spectroscopic systems. Astron. Astrophys. 634, A118 (2020).
Google Scholar
Shenar, T. et al. The Tarantula massive binary monitoring. V. R 144: a wind-eclipsing binary with a total mass ≳140 M⊙. Astron. Astrophys. 650, A147 (2021).
Google Scholar
Sabín-Sanjulián, C. et al. The VLT-FLAMES Tarantula survey. XXVI. Properties of the O-dwarf population in 30 Doradus. Astron. Astrophys. 601, A79 (2017).
Google Scholar
McEvoy, C. M. et al. The VLT-FLAMES Tarantula Survey. XIX. B-type supergiants: atmospheric parameters and nitrogen abundances to investigate the role of binarity and the width of the main sequence. Astron. Astrophys. 575, A70 (2015).
Google Scholar
Evans, C. J., van Loon, J. T., Hainich, R. & Bailey, M. 2dF-AAOmega spectroscopy of massive stars in the Magellanic Clouds. The north-eastern region of the Large Magellanic Cloud. Astron. Astrophys. 584, A5 (2015).
Google Scholar
Walborn, N. R., Lennon, D. J., Haser, S. M., Kudritzki, R.-P. & Voels, S. A. The physics of massive OB stars in different parent galaxies. I. Ultraviolet and optical spectral morphology in the Magellanic Clouds. Publ. Astron. Soc. Pac. 107, 104 (1995).
Google Scholar
Walborn, N. R. et al. A CNO dichotomy among O2 giant spectra in the Magellanic Clouds. Astrophys. J. 608, 1028–1038 (2004).
Google Scholar
Carretero-Castrillo, M., Ribó, M. & Paredes, J. M. Galactic runaway O and Be stars found using Gaia DR3. Astron. Astrophys. 679, A109 (2023).
Google Scholar
Stoop, M. et al. Reproduction package for the paper ‘Two waves of massive stars running away from the young cluster R136’. Zenodo https://doi.org/10.5281/zenodo.10058762 (2024).