Ultra-high-energy gamma-ray bubble around microquasar V4641 Sgr – Nature
Abeysekara, A. et al. Very-high-energy particle acceleration powered by the jets of the microquasar SS 433. Nature 562, 82–85 (2018).
Google Scholar
Abdalla, H. et al. Acceleration and transport of relativistic electrons in the jets of the microquasar SS 433. Science 383, 402–406 (2024).
MacDonald, R. K. D. et al. The black hole binary V4641 Sagitarii: activity in quiescence and improved mass determinations. Astrophys. J. 784, 2 (2014).
Google Scholar
Gaia, C. et al. Gaia Data Release 2. Summary of the contents and survey properties. Astron. Astrophys. 616, A1 (2018).
in ’t Zand, J. et al. SAX J1819.3-2525. International Astronomical Union Circular, No. 7119, #1 (1999).
Abdalla, H. et al. A search for very high-energy flares from the microquasars GRS 1915+105, Circinus X-1, and V4641 Sgr using contemporaneous H.E.S.S. and RXTE observations. Astron. Astrophys. 612, A10 (2018).
Escobar, G. J., Pellizza, L. & Romero, G. E. Cosmic-ray production from neutron escape in microquasar jets. Astron. Astrophys. 650, A136 (2021).
Google Scholar
Fender, R., Maccarone, T. & Van Kesteren, Z. Energization of interstellar media and cosmic ray production by jets from X-ray binaries. Mon. Not. R. Astron. Soc. 360, 1085–1090 (2005).
Google Scholar
Romero, G. E. & Vila, G. S. The proton low-mass microquasar: high-energy emission. Astron. Astrophys. 485, 623–631 (2008).
Google Scholar
Abeysekara, A. et al. The High-Altitude Water Cherenkov (HAWC) observatory in México: the primary detector. Nucl. Instrum. Methods Phys. Res. A 1052, 168253 (2023).
Google Scholar
Revnivtsev, M., Sunyaev, R., Gilfanov, M. & Churazov, E. V4641Sgr—a super-Eddington source enshrouded by an extended envelope. Astron. Astrophys. 385, 904–908 (2002).
Google Scholar
Lindstrøm, C. et al. New clues on outburst mechanisms and improved spectroscopic elements of the black hole binary V4641 Sagittarii. Mon. Not. R. Astron. Soc. 363, 882–890 (2005).
Google Scholar
Gallo, E., Plotkin, R. M. & Jonker, P. G. V4641 Sgr: a candidate precessing microblazar. Mon. Not. R. Astron. Soc. Lett. 438, L41–L45 (2013).
Google Scholar
Aharonian, F. & Atoyan, A. Gamma rays from galactic sources with relativistic jets. New Astron. Rev. 42, 579–584 (1998).
Google Scholar
Heinz, S. & Sunyaev, R. Cosmic rays from microquasars: a narrow component to the CR spectrum? Astron. Astrophys. 390, 751–766 (2002).
Google Scholar
Aharonian, F. A. Very High Energy Cosmic Gamma Radiation. A Crucial Window on the Extreme Universe (World Scientific, 2004).
IceCube Collaboration. Observation of high-energy neutrinos from the galactic plane. Science 380, 1338–1343 (2023).
Google Scholar
Margon, B. Observations of SS 433. Annu. Rev. Astron. Astrophys. 22, 507–536 (1984).
Google Scholar
Corbel, S. et al. Large-scale, decelerating, relativistic X-ray jets from the microquasar XTE J1550-564. Science 298, 196–199 (2002).
Google Scholar
Gallo, E. et al. A dark jet dominates the power output of the stellar black hole Cygnus X-1. Nature 436, 819–821 (2005).
Google Scholar
Sell, P. H. et al. Parsec-scale bipolar X-ray shocks produced by powerful jets from the neutron star Circinus X-1. Astrophys. J. Lett. 719, L194–L198 (2010).
Google Scholar
Pakull, M. W., Soria, R. & Motch, C. A 300-parsec-long jet-inflated bubble around a powerful microquasar in the galaxy NGC 7793. Nature 466, 209–212 (2010).
Google Scholar
Fabrika, S. The jets and supercritical accretion disk in SS 433. Astrophys. Space Phys. Rev. 12, 1–152 (2004).
Google Scholar
Pakull, M. W. & Mirioni, L. Bubble nebulae around ultraluminous X-ray sources. In Proc. Winds, Bubbles, and Explosions: A Conference to Honor John Dyson (eds Arthur, S. J. & Henney, W. J.) 197–199 (2003).
Berghea, C. T. et al. Detection of a radio bubble around the ultraluminous X-ray source Holmberg IX X-1. Astrophys. J. 896, 117 (2020).
Google Scholar
Kaaret, P., Feng, H. & Roberts, T. P. Ultraluminous X-ray sources. Annu. Rev. Astron. Astrophys. 55, 303–341 (2017).
Google Scholar
Mirabel, I. F. & Rodríguez, L. F. Sources of relativistic jets in the galaxy. Annu. Rev. Astron. Astrophys. 37, 409–443 (1999).
Google Scholar
Salvesen, G. & Pokawanvit, S. Origin of spin–orbit misalignments: the microblazar V4641 Sgr. Mon. Not. R. Astron. Soc. 495, 2179–2204 (2020).
Google Scholar
Heinz, S. & Sunyaev, R. A. Cosmic rays from microquasars: a narrow component to the CR spectrum? Astron. Astrophys. 390, 751–766 (2002).
Google Scholar
Cooper, A. J., Gaggero, D., Markoff, S. & Zhang, S. High-energy cosmic ray production in X-ray binary jets. Mon. Not. R. Astron. Soc. 493, 3212–3222 (2020).
Google Scholar
Albert, A. et al. Performance of the HAWC Observatory and TeV gamma-ray measurements of the Crab Nebula with improved extensive air shower reconstruction algorithms. Astrophys. J. 972, 144 (2024).
Abeysekara, A. et al. Measurement of the Crab Nebula spectrum past 100 TeV with HAWC. Astrophys. J. 881, 134 (2019).
Google Scholar
Vianello, G. et al. The Multi-Mission Maximum Likelihood framework (3ML). Preprint at https://arxiv.org/abs/1507.08343 (2015).
Younk, P. W. et al. A high-level analysis framework for HAWC. In Proc. 34th International Cosmic Ray Conference (ICRC2015) 948 (2015).
Abeysekara, A. U. et al. Characterizing gamma-ray sources with HAL (HAWC accelerated likelihood) and 3ML. In Proc. 37th International Cosmic Ray Conference (ICRC2021) 828 (2022).
Atkins, R. et al. Observation of TeV gamma rays from the Crab Nebula with Milagro using a new background rejection technique. Astrophys. J. 595, 803–811 (2003).
Google Scholar
Abeysekara, A. et al. Observation of the Crab Nebula with the HAWC gamma-ray observatory. Astrophys. J. 843, 39 (2017).
Google Scholar
Ackermann, M. et al. Search for extended sources in the galactic plane using six years of Fermi-Large Area Telescope pass 8 data above 10 GeV. Astrophys. J. 843, 139 (2017).
Google Scholar
Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).
Google Scholar
Liddle, A. R. Information criteria for astrophysical model selection. Mon. Not. R. Astron. Soc. Lett. 377, L74–L78 (2007).
Google Scholar
Bozdogan, H. Model selection and Akaike’s information criterion (AIC): the general theory and its analytical extensions. Psychometrika 52, 345–370 (1987).
Google Scholar
Abeysekara, A. et al. Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth. Science 358, 911–914 (2017).
Google Scholar
Abeysekara, A. et al. HAWC observations of the acceleration of very-high-energy cosmic rays in the Cygnus Cocoon. Nat. Astron. 5, 465–471 (2021).
Google Scholar
Albert, A. et al. 3HWC: the third HAWC catalog of very-high-energy gamma-ray sources. Astrophys. J. 905, 76 (2020).
Google Scholar
Abdalla, H. et al. The H.E.S.S. Galactic plane survey. Astron. Astrophys. 612, A1 (2018).
Abdollahi, S. et al. Incremental Fermi Large Area Telescope fourth source catalog. Astrophys. J. Suppl. Ser. 260, 53 (2022).
Google Scholar
Liu, Q. Z., van Paradijs, J. & van den Heuvel, E. P. J. Catalogue of high-mass X-ray binaries in the Galaxy. Astron. Astrophys. 455, 1165–1168 (2006).
Google Scholar
Liu, Q. Z., van Paradijs, J. & van den Heuvel, E. P. J. A catalogue of low-mass X-ray binaries in the Galaxy, LMC, and SMC (Fourth edition). Astron. Astrophys. 469, 807–810 (2007).
Google Scholar
Ritter, H. & Kolb, U. Catalogue of cataclysmic binaries, low-mass X-ray binaries and related objects (Seventh edition). Astron. Astrophys. 404, 301–303 (2003).
Google Scholar
Tanaka, Y. & Lewin, W. H. G. in X-ray Binaries (eds Lewin, W. H. G., van Paradijs, J. & van den Heuvel, E. P. J.) 126 (Cambridge Univ. Press, 1995).
Krivonos, R. et al. INTEGRAL/IBIS nine-year Galactic hard X-ray survey. Astron. Astrophys. 545, A27 (2012).
Bird, A. et al. The IBIS soft gamma-ray sky after 1000 INTEGRAL orbits. Astrophys. J. Suppl. Ser. 223, 15 (2016).
Google Scholar
Oh, K. et al. The 105-month Swift-BAT all-sky hard X-ray survey. Astrophys. J. Suppl. Ser. 235, 4 (2018).
Google Scholar
Matsuoka, M. et al. The MAXI mission on the ISS: science and instruments for monitoring all-sky X-ray images. Publ. Astron. Soc. Jpn. 61, 999–1010 (2009).
Google Scholar
Shaw, A. et al. High resolution X-ray spectroscopy of V4641 Sgr during its 2020 outburst. Mon. Not. R. Astron. Soc. 516, 124–137 (2022).
Google Scholar
Revnivtsev, M., Gilfanov, M., Churazov, E. & Sunyaev, R. Super-Eddington outburst of V4641 Sgr. Astron. Astrophys. 391, 1013–1022 (2002).
Google Scholar
Koljonen, K. I. I. & Tomsick, J. A. The obscured X-ray binaries V404 Cyg, Cyg X-3, V4641 Sgr, and GRS 1915+105. Astron. Astrophys. 639, A13 (2020).
Google Scholar
Hjellming, R. et al. Light curves and radio structure of the 1999 September transient event in V4641 Sagittarii (=XTE J1819–254=SAX J1819.3–2525). Astrophys. J. 544, 977 (2000).
Google Scholar
Orosz, J. A. et al. A black hole in the superluminal source SAX J1819.3–2525 (V4641 Sgr). Astrophys. J. 555, 489 (2001).
Google Scholar
Chaty, S. et al. Optical and near-infrared observations of the microquasar V4641 Sgr during the 1999 September outburst. Mon. Not. R. Astron. Soc. 343, 169–174 (2003).
Google Scholar
Dame, T. M., Hartmann, D. & Thaddeus, P. The Milky Way in molecular clouds: a new complete CO survey. Astrophys. J. 547, 792–813 (2001).
Google Scholar
Dame, T. M. & Thaddeus, P. A CO survey of the entire northern sky. Astrophys. J. Suppl. Ser. 262, 5 (2022).
Google Scholar
Kalberla, P. M. et al. The Leiden/Argentine/Bonn (LAB) survey of galactic HI-final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. Astron. Astrophys. 440, 775–782 (2005).
Google Scholar
Maitra, D. & Bailyn, C. D. X-ray observations of V4641 SGR (SAX J1819.3–2525) during the brief and violent outburst of 2003. Astrophys. J. 637, 992 (2006).
Google Scholar
Pahari, M., Misra, R., Dewangan, G. C. & Pawar, P. Constraining distance and inclination angle of V4641 Sgr using SWIFT and NuSTAR observations during low soft spectral state. Astrophys. J. 814, 158 (2015).
Google Scholar
Clemens, D. P. Massachusetts–Stony Brook galactic plane CO survey: the Galactic disk rotation curve. Astrophys. J. 295, 422–428 (1985).
Google Scholar
Gabici, S., Aharonian, F. A. & Casanova, S. Broad-band non-thermal emission from molecular clouds illuminated by cosmic rays from nearby supernova remnants. Mon. Not. R. Astron. Soc. 396, 1629–1639 (2009).
Google Scholar