Young asteroid families as the primary source of meteorites – Nature

You May Be Interested In:The Download: China’s mineral ban, and three technologies to watch


  • Chladni, E. F. F. Über den Ursprung der von Pallas Gefundenen und anderer ihr ähnlicher Eisenmassen, und Über Einige Damit in Verbindung stehende Naturerscheinungen (Johan Friedrich Hartknoch, 1794).

  • Biot, J.-B. Vorläufige Nachricht von dem Steinregen zu l’Aigle, am 26sten April 1803. Ann. Phys. 15, 74–76 (1803).

    Google Scholar 

  • Kulik, L. A. Otčet meteoritičeskoj ekspedicii o rabotach proizvedennych s 19 Maja 1921 g. po 29 Nojabrja 1922 g. Izv. Ross. Akad. Nauk 16, 391–410 (1922).

    Google Scholar 

  • Marvin, U. B. The discovery and initial characterization of Allan Hills 81005: the first lunar meteorite. Geophys. Res. Lett. 10, 775–778 (1983).

    ADS 
    CAS 

    Google Scholar 

  • Treiman, A. H., Gleason, J. D. & Bogard, D. D. The SNC meteorites are from Mars. Planet. Space Sci. 48, 1213–1230 (2000).

    ADS 
    CAS 

    Google Scholar 

  • Thomas, P. C. et al. Impact excavation on asteroid 4 Vesta: Hubble Space Telescope results. Science 277, 1492–1495 (1997).

    ADS 
    CAS 

    Google Scholar 

  • Nesvorný, D., Bottke, J., William, F., Dones, L. & Levison, H. F. The recent breakup of an asteroid in the main-belt region. Nature 417, 720–771 (2002).

    ADS 

    Google Scholar 

  • Sykes, M. V. Zodiacal dust bands: their relation to asteroid families. Icarus 85, 267–289 (1990).

    ADS 

    Google Scholar 

  • Reach, W. T., Franz, B. A. & Weiland, J. L. The three-dimensional structure of the zodiacal dust bands. Icarus 127, 461–484 (1997).

    ADS 

    Google Scholar 

  • Nesvorný, D., Bottke, W. F., Levison, H. F. & Dones, L. Recent origin of the Solar System dust bands. Astrophys. J. 591, 486–497 (2003).

    ADS 

    Google Scholar 

  • Graf, T. & Marti, K. Collisional history of H chondrites. J. Geophys. Res. 100, 21247–21264 (1995).

    ADS 

    Google Scholar 

  • Eugster, O., Herzog, G. F., Marti, K. & Caffee, M. W. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween, H. Y.) 829 (Univ. Arizona Press, 2006).

  • Spurný, P., Borovička, J. & Shrbený, L. The Žďár nad Sázavou meteorite fall: fireball trajectory, photometry, dynamics, fragmentation, orbit, and meteorite recovery. Meteorit. Planet. Sci. 55, 376–401 (2020).

    ADS 

    Google Scholar 

  • Brown, P., Wiegert, P., Clark, D. & Tagliaferri, E. Orbital and physical characteristics of meter-scale impactors from airburst observations. Icarus 266, 96–111 (2016).

    ADS 

    Google Scholar 

  • Jenniskens, P. et al. CAMS newly detected meteor showers and the sporadic background. Icarus 266, 384–409 (2016).

    ADS 

    Google Scholar 

  • Bottke, W. F. et al. Debiased orbital and absolute magnitude distribution of the near-Earth objects. Icarus 156, 399–433 (2002).

    ADS 

    Google Scholar 

  • Granvik, M. et al. Debiased orbit and absolute-magnitude distributions for near-Earth objects. Icarus 312, 181–207 (2018).

    ADS 

    Google Scholar 

  • Nesvorný, D. et al. NEOMOD: a new orbital distribution model for near-Earth objects. Astron. J. 166, 55 (2023).

    ADS 

    Google Scholar 

  • Binzel, R. P., Bus, S. J., Burbine, T. H. & Sunshine, J. M. Spectral properties of near-Earth asteroids: evidence for sources of ordinary chondrite meteorites. Science 273, 946–948 (1996).

    ADS 
    CAS 

    Google Scholar 

  • Vernazza, P. et al. Compositional differences between meteorites and near-Earth asteroids. Nature 454, 858–860 (2008).

    ADS 
    CAS 

    Google Scholar 

  • Marsset, M. et al. The debiased compositional distribution of MITHNEOS: global match between the near-Earth and main-belt asteroid populations, and excess of D-type near-Earth objects. Astron. J. 163, 165 (2022).

    ADS 

    Google Scholar 

  • Farinella, P., Vokrouhlický, D. & Hartmann, W. K. Meteorite delivery via Yarkovsky orbital drift. Icarus 132, 378–387 (1998).

    ADS 
    CAS 

    Google Scholar 

  • Bus, S. J. & Binzel, R. P. Phase II of the small main-belt asteroid spectroscopic survey. A feature-based taxonomy. Icarus 158, 146–177 (2002).

    ADS 

    Google Scholar 

  • DeMeo, F. E., Binzel, R. P., Slivan, S. M. & Bus, S. J. An extension of the Bus asteroid taxonomy into the near-infrared. Icarus 202, 160–180 (2009).

    ADS 
    CAS 

    Google Scholar 

  • Vernazza, P. et al. Multiple and fast: the accretion of ordinary chondrite parent bodies. Astrophys. J. 791, 120 (2014).

    ADS 

    Google Scholar 

  • Vernazza, P. et al. Compositional homogeneity of CM parent bodies. Astron. J. 152, 54 (2016).

    ADS 

    Google Scholar 

  • de León, J., Licandro, J., Serra-Ricart, M., Pinilla-Alonso, N. & Campins, H. Observations, compositional, and physical characterization of near-Earth and Mars-crosser asteroids from a spectroscopic survey. Astron. Astrophys. 517, A23 (2010).

    Google Scholar 

  • Molnar, L. A. & Haegert, M. J. Details of Recent Collisions of Asteroids 832 Karin and 158 Koronis. In Proc. AAS/Division for Planetary Sciences Meeting, 41, 27.05 (2009).

  • Nesvorný, D., Vokrouhlický, D., Bottke, W. F. & Sykes, M. Physical properties of asteroid dust bands and their sources. Icarus 181, 107–144 (2006).

    ADS 

    Google Scholar 

  • Flynn, G. J., Durda, D. D., Sandel, L. E., Kreft, J. W. & Strait, M. M. Dust production from the hypervelocity impact disruption of the Murchison hydrous CM2 meteorite: implications for the disruption of hydrous asteroids and the production of interplanetary dust. Planet. Space Sci. 57, 119–126 (2009).

    ADS 

    Google Scholar 

  • Morbidelli, A., Bottke, W. F., Nesvorný, D. & Levison, H. F. Asteroids were born big. Icarus 204, 558–573 (2009).

    ADS 

    Google Scholar 

  • Campo Bagatin, A., Cellino, A., Davis, D. R., Farinella, P. & Paolicchi, P. Wavy size distributions for collisional systems with a small-size cutoff. Planet. Space Sci. 42, 1079–1092 (1994).

    ADS 

    Google Scholar 

  • O’Brien, D. P. & Greenberg, R. The collisional and dynamical evolution of the main-belt and NEA size distributions. Icarus 178, 179–212 (2005).

    ADS 

    Google Scholar 

  • Brož, M., Vokrouhlický, D., Morbidelli, A., Nesvorný, D. & Bottke, W. F. Did the Hilda collisional family form during the late heavy bombardment? Mon. Not. R. Astron. Soc. 414, 2716–2727 (2011).

    ADS 

    Google Scholar 

  • Levison, H. F. & Duncan, M. J. The long-term dynamical behavior of short-period comets. Icarus 108, 18–36 (1994).

    ADS 

    Google Scholar 

  • Yarkovsky, I. O. Plotnosť svetovogo efira i okazyvaemoe im soprotivlenie dviženiu (Typografia Judina, 1901).

  • Vokrouhlický, D. Diurnal Yarkovsky effect as a source of mobility of meter-sized asteroidal fragments. I. Linear theory. Astron. Astrophys. 335, 1093–1100 (1998).

    ADS 

    Google Scholar 

  • Vokrouhlický, D. & Farinella, P. The Yarkovsky seasonal effect on asteroidal fragments: a nonlinearized theory for spherical bodies. Astron. J. 118, 3049–3060 (1999).

    ADS 

    Google Scholar 

  • Rubincam, D. P. Radiative spin-up and spin-down of small asteroids. Icarus 148, 2–11 (2000).

    ADS 

    Google Scholar 

  • Čapek, D. & Vokrouhlický, D. The YORP effect with finite thermal conductivity. Icarus 172, 526–536 (2004).

    ADS 

    Google Scholar 

  • Gattacceca, J. et al. The Meteoritical Bulletin, No. 110. Meteorit. Planet. Sci. 57, 2102–2105 (2022).

    ADS 
    CAS 

    Google Scholar 

  • Marsset, M. et al. The Massalia asteroid family as the origin of ordinary L chondrites. Nature https://doi.org/10.1038/s41586-024-08007-6 (2024).

  • Meier, M. Meteorite Orbits www.meteoriteorbits.info/ (2023).

  • Farley, K. A., Vokrouhlický, D., Bottke, W. F. & Nesvorný, D. A late Miocene dust shower from the break-up of an asteroid in the main belt. Nature 439, 295–297 (2006).

    ADS 
    CAS 

    Google Scholar 

  • Chesley, S. R., Chodas, P. W., Milani, A., Valsecchi, G. B. & Yeomans, D. K. Quantifying the risk posed by potential Earth impacts. Icarus 159, 423–432 (2002).

    ADS 

    Google Scholar 

  • Lauretta, D. S. et al. The unexpected surface of asteroid (101955) Bennu. Nature 568, 55–60 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Watanabe, S. et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top-shaped rubble pile. Science 364, 268–272 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Novaković, B., Tsiganis, K. & Knežević, Z. Chaotic transport and chronology of complex asteroid families. Mon. Not. R. Astron. Soc. 402, 1263–1272 (2010).

    ADS 

    Google Scholar 

  • Nesvorný, D. et al. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophys. J. 713, 816–836 (2010).

    ADS 

    Google Scholar 

  • Bottke, W. F. et al. in Asteroids IV (eds Michel, P. et al.) 701–724 (Univ. Arizona Press, 2015).

  • Nesvorný, D., Brož, M. & Carruba, V. in Asteroids IV (eds Michel, P. et al.) 297–321 (Univ. Arizona Press, 2015).

  • Benz, W. & Asphaug, E. Catastrophic disruptions revisited. Icarus 142, 5–20 (1999).

    ADS 

    Google Scholar 

  • Bottke, W. F. et al. Interpreting the cratering histories of Bennu, Ryugu, and other spacecraft-explored asteroids. Astron. J. 160, 14 (2020).

    ADS 

    Google Scholar 

  • Vernazza, P. et al. The impact crater at the origin of the Julia family detected with VLT/SPHERE? Astron. Astrophys. 618, A154 (2018).

    Google Scholar 

  • Ševeček, P. et al. SPH/N-Body simulations of small (D = 10 km) asteroidal breakups and improved parametric relations for Monte-Carlo collisional models. Icarus 296, 239–256 (2017).

    ADS 

    Google Scholar 

  • Harris, A. W. et al. in Asteroids IV (eds Michel, P. et al.) 835–854 (Univ. Arizona Press, 2015).

  • O’Brien, D. P. et al. Constraining the cratering chronology of Vesta. Planet. Space Sci. 103, 131–142 (2014).

    ADS 

    Google Scholar 

  • Marchi, S. et al. The violent collisional history of asteroid 4 Vesta. Science 336, 690 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Brož, M., Chrenko, O., Nesvorný, D. & Dauphas, N. Early terrestrial planet formation by torque-driven convergent migration of planetary embryos. Nat. Astron. 5, 898–902 (2021).

    ADS 

    Google Scholar 

  • Love, S. G. & Brownlee, D. E. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993).

    ADS 
    CAS 

    Google Scholar 

  • Carruba, V., Nesvorný, D. & Vokrouhlický, D. Detection of the YORP effect for small asteroids in the Karin cluster. Astron. J. 151, 164 (2016).

    ADS 

    Google Scholar 

  • Quinn, T. R., Tremaine, S. & Duncan, M. A three million year integration of the Earth’s orbit. Astron. J. 101, 2287–2305 (1991).

    ADS 

    Google Scholar 

  • Gradie, J. C., Chapman, C. R. & Tedesco, E. F. in Asteroids II (eds Binzel, R. P. et al.) 316–335 (Univ. Arizona Press, 1989).

  • Harris, A. W. & Chodas, P. W. The population of near-Earth asteroids revisited and updated. Icarus 365, 114452 (2021).

    Google Scholar 

  • share Paylaş facebook pinterest whatsapp x print

    Similar Content

    Ageing of stem cells reduces their capacity to form tumours
    Ageing of stem cells reduces their capacity to form tumours
    Your friends shape your microbiome — and so do their friends
    Your friends shape your microbiome — and so do their friends
    Daily briefing: An elephant learns to shower — until her jealous rival turns to sabotage
    Daily briefing: An elephant learns to shower — until her jealous rival turns to sabotage
    Falling enrolments and funding cuts force Australian universities to take stock
    Falling enrolments and funding cuts force Australian universities to take stock
    This AI powered ‘tongue’ can tell Coke and Pepsi apart
    This AI powered ‘tongue’ can tell Coke and Pepsi apart
    Smashing atomic nuclei together reveals their elusive shapes
    Smashing atomic nuclei together reveals their elusive shapes
    Headline Central | © 2024 | News