Young asteroid families as the primary source of meteorites – Nature
Chladni, E. F. F. Über den Ursprung der von Pallas Gefundenen und anderer ihr ähnlicher Eisenmassen, und Über Einige Damit in Verbindung stehende Naturerscheinungen (Johan Friedrich Hartknoch, 1794).
Biot, J.-B. Vorläufige Nachricht von dem Steinregen zu l’Aigle, am 26sten April 1803. Ann. Phys. 15, 74–76 (1803).
Kulik, L. A. Otčet meteoritičeskoj ekspedicii o rabotach proizvedennych s 19 Maja 1921 g. po 29 Nojabrja 1922 g. Izv. Ross. Akad. Nauk 16, 391–410 (1922).
Marvin, U. B. The discovery and initial characterization of Allan Hills 81005: the first lunar meteorite. Geophys. Res. Lett. 10, 775–778 (1983).
Google Scholar
Treiman, A. H., Gleason, J. D. & Bogard, D. D. The SNC meteorites are from Mars. Planet. Space Sci. 48, 1213–1230 (2000).
Google Scholar
Thomas, P. C. et al. Impact excavation on asteroid 4 Vesta: Hubble Space Telescope results. Science 277, 1492–1495 (1997).
Google Scholar
Nesvorný, D., Bottke, J., William, F., Dones, L. & Levison, H. F. The recent breakup of an asteroid in the main-belt region. Nature 417, 720–771 (2002).
Google Scholar
Sykes, M. V. Zodiacal dust bands: their relation to asteroid families. Icarus 85, 267–289 (1990).
Google Scholar
Reach, W. T., Franz, B. A. & Weiland, J. L. The three-dimensional structure of the zodiacal dust bands. Icarus 127, 461–484 (1997).
Google Scholar
Nesvorný, D., Bottke, W. F., Levison, H. F. & Dones, L. Recent origin of the Solar System dust bands. Astrophys. J. 591, 486–497 (2003).
Google Scholar
Graf, T. & Marti, K. Collisional history of H chondrites. J. Geophys. Res. 100, 21247–21264 (1995).
Google Scholar
Eugster, O., Herzog, G. F., Marti, K. & Caffee, M. W. in Meteorites and the Early Solar System II (eds Lauretta, D. S. & McSween, H. Y.) 829 (Univ. Arizona Press, 2006).
Spurný, P., Borovička, J. & Shrbený, L. The Žďár nad Sázavou meteorite fall: fireball trajectory, photometry, dynamics, fragmentation, orbit, and meteorite recovery. Meteorit. Planet. Sci. 55, 376–401 (2020).
Google Scholar
Brown, P., Wiegert, P., Clark, D. & Tagliaferri, E. Orbital and physical characteristics of meter-scale impactors from airburst observations. Icarus 266, 96–111 (2016).
Google Scholar
Jenniskens, P. et al. CAMS newly detected meteor showers and the sporadic background. Icarus 266, 384–409 (2016).
Google Scholar
Bottke, W. F. et al. Debiased orbital and absolute magnitude distribution of the near-Earth objects. Icarus 156, 399–433 (2002).
Google Scholar
Granvik, M. et al. Debiased orbit and absolute-magnitude distributions for near-Earth objects. Icarus 312, 181–207 (2018).
Google Scholar
Nesvorný, D. et al. NEOMOD: a new orbital distribution model for near-Earth objects. Astron. J. 166, 55 (2023).
Google Scholar
Binzel, R. P., Bus, S. J., Burbine, T. H. & Sunshine, J. M. Spectral properties of near-Earth asteroids: evidence for sources of ordinary chondrite meteorites. Science 273, 946–948 (1996).
Google Scholar
Vernazza, P. et al. Compositional differences between meteorites and near-Earth asteroids. Nature 454, 858–860 (2008).
Google Scholar
Marsset, M. et al. The debiased compositional distribution of MITHNEOS: global match between the near-Earth and main-belt asteroid populations, and excess of D-type near-Earth objects. Astron. J. 163, 165 (2022).
Google Scholar
Farinella, P., Vokrouhlický, D. & Hartmann, W. K. Meteorite delivery via Yarkovsky orbital drift. Icarus 132, 378–387 (1998).
Google Scholar
Bus, S. J. & Binzel, R. P. Phase II of the small main-belt asteroid spectroscopic survey. A feature-based taxonomy. Icarus 158, 146–177 (2002).
Google Scholar
DeMeo, F. E., Binzel, R. P., Slivan, S. M. & Bus, S. J. An extension of the Bus asteroid taxonomy into the near-infrared. Icarus 202, 160–180 (2009).
Google Scholar
Vernazza, P. et al. Multiple and fast: the accretion of ordinary chondrite parent bodies. Astrophys. J. 791, 120 (2014).
Google Scholar
Vernazza, P. et al. Compositional homogeneity of CM parent bodies. Astron. J. 152, 54 (2016).
Google Scholar
de León, J., Licandro, J., Serra-Ricart, M., Pinilla-Alonso, N. & Campins, H. Observations, compositional, and physical characterization of near-Earth and Mars-crosser asteroids from a spectroscopic survey. Astron. Astrophys. 517, A23 (2010).
Molnar, L. A. & Haegert, M. J. Details of Recent Collisions of Asteroids 832 Karin and 158 Koronis. In Proc. AAS/Division for Planetary Sciences Meeting, 41, 27.05 (2009).
Nesvorný, D., Vokrouhlický, D., Bottke, W. F. & Sykes, M. Physical properties of asteroid dust bands and their sources. Icarus 181, 107–144 (2006).
Google Scholar
Flynn, G. J., Durda, D. D., Sandel, L. E., Kreft, J. W. & Strait, M. M. Dust production from the hypervelocity impact disruption of the Murchison hydrous CM2 meteorite: implications for the disruption of hydrous asteroids and the production of interplanetary dust. Planet. Space Sci. 57, 119–126 (2009).
Google Scholar
Morbidelli, A., Bottke, W. F., Nesvorný, D. & Levison, H. F. Asteroids were born big. Icarus 204, 558–573 (2009).
Google Scholar
Campo Bagatin, A., Cellino, A., Davis, D. R., Farinella, P. & Paolicchi, P. Wavy size distributions for collisional systems with a small-size cutoff. Planet. Space Sci. 42, 1079–1092 (1994).
Google Scholar
O’Brien, D. P. & Greenberg, R. The collisional and dynamical evolution of the main-belt and NEA size distributions. Icarus 178, 179–212 (2005).
Google Scholar
Brož, M., Vokrouhlický, D., Morbidelli, A., Nesvorný, D. & Bottke, W. F. Did the Hilda collisional family form during the late heavy bombardment? Mon. Not. R. Astron. Soc. 414, 2716–2727 (2011).
Google Scholar
Levison, H. F. & Duncan, M. J. The long-term dynamical behavior of short-period comets. Icarus 108, 18–36 (1994).
Google Scholar
Yarkovsky, I. O. Plotnosť svetovogo efira i okazyvaemoe im soprotivlenie dviženiu (Typografia Judina, 1901).
Vokrouhlický, D. Diurnal Yarkovsky effect as a source of mobility of meter-sized asteroidal fragments. I. Linear theory. Astron. Astrophys. 335, 1093–1100 (1998).
Google Scholar
Vokrouhlický, D. & Farinella, P. The Yarkovsky seasonal effect on asteroidal fragments: a nonlinearized theory for spherical bodies. Astron. J. 118, 3049–3060 (1999).
Google Scholar
Rubincam, D. P. Radiative spin-up and spin-down of small asteroids. Icarus 148, 2–11 (2000).
Google Scholar
Čapek, D. & Vokrouhlický, D. The YORP effect with finite thermal conductivity. Icarus 172, 526–536 (2004).
Google Scholar
Gattacceca, J. et al. The Meteoritical Bulletin, No. 110. Meteorit. Planet. Sci. 57, 2102–2105 (2022).
Google Scholar
Marsset, M. et al. The Massalia asteroid family as the origin of ordinary L chondrites. Nature https://doi.org/10.1038/s41586-024-08007-6 (2024).
Meier, M. Meteorite Orbits www.meteoriteorbits.info/ (2023).
Farley, K. A., Vokrouhlický, D., Bottke, W. F. & Nesvorný, D. A late Miocene dust shower from the break-up of an asteroid in the main belt. Nature 439, 295–297 (2006).
Google Scholar
Chesley, S. R., Chodas, P. W., Milani, A., Valsecchi, G. B. & Yeomans, D. K. Quantifying the risk posed by potential Earth impacts. Icarus 159, 423–432 (2002).
Google Scholar
Lauretta, D. S. et al. The unexpected surface of asteroid (101955) Bennu. Nature 568, 55–60 (2019).
Google Scholar
Watanabe, S. et al. Hayabusa2 arrives at the carbonaceous asteroid 162173 Ryugu—A spinning top-shaped rubble pile. Science 364, 268–272 (2019).
Google Scholar
Novaković, B., Tsiganis, K. & Knežević, Z. Chaotic transport and chronology of complex asteroid families. Mon. Not. R. Astron. Soc. 402, 1263–1272 (2010).
Google Scholar
Nesvorný, D. et al. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophys. J. 713, 816–836 (2010).
Google Scholar
Bottke, W. F. et al. in Asteroids IV (eds Michel, P. et al.) 701–724 (Univ. Arizona Press, 2015).
Nesvorný, D., Brož, M. & Carruba, V. in Asteroids IV (eds Michel, P. et al.) 297–321 (Univ. Arizona Press, 2015).
Benz, W. & Asphaug, E. Catastrophic disruptions revisited. Icarus 142, 5–20 (1999).
Google Scholar
Bottke, W. F. et al. Interpreting the cratering histories of Bennu, Ryugu, and other spacecraft-explored asteroids. Astron. J. 160, 14 (2020).
Google Scholar
Vernazza, P. et al. The impact crater at the origin of the Julia family detected with VLT/SPHERE? Astron. Astrophys. 618, A154 (2018).
Ševeček, P. et al. SPH/N-Body simulations of small (D = 10 km) asteroidal breakups and improved parametric relations for Monte-Carlo collisional models. Icarus 296, 239–256 (2017).
Google Scholar
Harris, A. W. et al. in Asteroids IV (eds Michel, P. et al.) 835–854 (Univ. Arizona Press, 2015).
O’Brien, D. P. et al. Constraining the cratering chronology of Vesta. Planet. Space Sci. 103, 131–142 (2014).
Google Scholar
Marchi, S. et al. The violent collisional history of asteroid 4 Vesta. Science 336, 690 (2012).
Google Scholar
Brož, M., Chrenko, O., Nesvorný, D. & Dauphas, N. Early terrestrial planet formation by torque-driven convergent migration of planetary embryos. Nat. Astron. 5, 898–902 (2021).
Google Scholar
Love, S. G. & Brownlee, D. E. A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993).
Google Scholar
Carruba, V., Nesvorný, D. & Vokrouhlický, D. Detection of the YORP effect for small asteroids in the Karin cluster. Astron. J. 151, 164 (2016).
Google Scholar
Quinn, T. R., Tremaine, S. & Duncan, M. A three million year integration of the Earth’s orbit. Astron. J. 101, 2287–2305 (1991).
Google Scholar
Gradie, J. C., Chapman, C. R. & Tedesco, E. F. in Asteroids II (eds Binzel, R. P. et al.) 316–335 (Univ. Arizona Press, 1989).
Harris, A. W. & Chodas, P. W. The population of near-Earth asteroids revisited and updated. Icarus 365, 114452 (2021).